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Abstract
Based on the modified Heisenberg model we analyse the influence of size
and anisotropy effects on static and dynamic properties of ferromagnetic
nanoparticles. A Green’s function technique in real space enables us to calculate
the excitation energy and its damping as well as the magnetization depending
on the temperature and the size of the particles. The critical temperature is
also determined by the size of the particles. With decreasing particle size the
spin-excitation energy can decrease or increase for different surface exchange
interaction constants, whereas the damping always increases. Additionally, we
consider the influence of surface anisotropy and external magnetic field on the
excitation spectrum. The theoretical results are in reasonable accordance with
experimental data.

1. Introduction

Magnetic nanoparticles show a variety of unusual magnetic behaviours when compared to the
bulk materials, mostly due to finite size effects, surface/interface effects, including symmetry
breaking, electronic environment/charge transfer and magnetic interactions. Magnetic
properties such as magnetization, hysteresis and phase transition temperature show reasonable
size dependences. They are found to be reduced [1–4] or enhanced [5–7] in small particles
due to surface spin disorder. High-frequency collective magnetic excitations in magnetic
nanoparticles are obtained from neutron scattering experiments [8, 9]. These excitations include
discretized spin wave modes and surface modes [10]. Recent experiments revealed particle
size scaling laws in the resonance peak frequency dependence in Co–Ni nanoparticles [11]. A
theoretical analysis of these experiments has been made by Ferchmin [12]. X-ray diffraction
measurements have been performed on LaSrMnO3 nanoparticles by Roy et al [13]. Collective
excitations are observed, but due to finite size effects they do not follow the Bloch law.
Respaud et al [14] reported on high-frequency ferromagnetic resonance measurements on
ultrafine Co particles with strong uniaxial effective anisotropy. The transverse relaxation
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time is two orders of magnitude smaller than the bulk value, indicating strong damping
effects, possible originating from surface spin disorder. Single-electron tunnelling spectroscopy
studies [15, 16] have succeeded in resolving the excitation spectra of ferromagnetic transition-
metal nanoparticles. The discrete resonances seen in the tunnelling experiments measure the
low-energy many-electron excitation spectra of a single-domain ferromagnetic nanoparticle.
X-ray diffraction measurements were performed to study the static and dynamic magnetic
properties of spherical magnetite [1] and of SnFe2O4 nanoparticles [2]. It was found that the
width of the diffraction peaks increases as the size of the nanoparticles decreases. Sanchez et al
[3] and Hsu et al [17] presented magnetic resonance experiments in order to study the dynamic
behaviours of resonance field and resonance linewidth for Y3Fe5O12 and Fe3O4 nanoparticles
with different sizes, respectively. The superparamagnetic effects in the ferromagnetic resonance
of Ni particles are investigated by Sharma and Baiker [18]. Broadening of the resonance occurs
at lower temperatures. The anisotropy field is reduced in the particles as compared to bulk
Ni. Concurrently with the line broadening, the resonance shifts to lower magnetic fields.
By use of inelastic neutron scattering, Kuhn et al [19] have studied magnetic fluctuations in
8 nm haematite nanoparticles as a function of temperature and applied magnetic fields. They
observed an increase in the width of the inelastic peak with increasing temperature, which is
correlated to the excessive magnetic dynamics such as q = 0 spin waves within the particles.
For the interacting nanoparticles the width is a factor of two to three larger, indicating that there
is a broad range of interaction energies.

Whereas the static properties of small metal particles or clusters can be obtained at a
microscopic level, the situation is much worse as far as the dynamical properties are concerned,
because the Monte Carlo studies did not describe the detailed dynamical behaviour. The spin-
wave spectrum of Heisenberg spin clusters of various structures ranging in size between 9 and
749 spins is calculated by a self-consistent diagonalization of the equation of motion of S+
in real space by Hendriksen et al [20]. The spin-wave spectrum of the clusters is strongly
modified relative to the bulk. The anisotropy effects are not taken into account. Canali and
MacDonald [21] reported a theory of the low-energy excitations of a ferromagnetic metal
nanoparticle. In addition to the particle–hole excitations, which occur in a paramagnetic metal
nanoparticle, they predicted a branch of excitations involving the magnetization-orientation
collective coordinate. A theoretical treatment of spin-wave excitations in ferromagnetic
wires and particles in the presence of single-ion surface anisotropy is developed within the
framework of the matrix theory by Ferchmin and Puszkarski [22]. Recently, Cehovin et al
[23] have presented a theory of the elementary spin excitations in transition-metal ferromagnet
nanoparticles which achieves a unified and consistent quantum description of both collective
and quasiparticle physics. Arias et al [24] presented explicit calculations of the mode spectrum
of a ferromagnetic sphere, along with the response functions which describe excitation of
spin wave modes by spatially inhomogeneous fields. Using a spin-wave model Morup and
Hansen [25] have shown that the uniform precession mode, corresponding to a spin wave
with wavevector q = 0, is predominant in nanoparticles. This is in accordance with the
results of a classical model for collective magnetic excitations in nanoparticles [26]. Shilov
et al have presented a macroscopic model of the effect of uniaxial surface anisotropy [27]
and unidirectional surface anisotropy [28] on the magnetodynamics of ferrite nanoparticles
using the Landau–Lifshitz equation. It is shown that in the first case the surface can produce
a considerable shift of the precession frequency whereas in the second case the surface effect
is equivalent to the presence of an additional intrinsic size-dependent field coaligned with the
constant magnetizing one. This model is most appropriate at low temperatures. In all previous
papers the linewidth of the resonance peaks is not considered. Recently, the dynamical response
of nanoparticles as probed by ferromagnetic resonance has been studied by Usadel [29] within
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a classical spin model using Landau–Lifshitz–Gilbert dynamics. The dependence of both the
shift of the resonance signal and the linewidth on temperature is obtained.

The aim of the present paper is to study the size and anisotropy effects on the static and
dynamic properties of magnetic nanoparticles including single-ion anisotropy using a Green’s
function theory in order to explain the different experimental and theoretical results.

2. The model and the matrix Green’s function

In this section we present calculations for obtaining the spin Green’s function for a
ferromagnetic nanoparticle. This method seems still probably the most appropriate tool to study
complex systems with low symmetry. Different to extended materials, the Green’s function
for small particles has to be formulated in real space [22]. Moreover, the real-space Green’s
function leads directly to the local density of states. Because of the presence of, at most,
only partial long-range order and, in many cases, the complete absence of long-range order,
such a nanoparticle is nevertheless sufficiently complex and involves usually a large number of
relevant degrees of freedom. Therefore, the calculation of the real-space Green’s function of
such a complex system is a formidable task. A nanoparticle is defined by fixing the origin of
a certain spin in the centre of the particle and including all spins within the particle in shells.
The shells are numbered by n = 1, . . . , N , where n = 1 denotes the central spin and n = N
represents the surface shell of the system. The exchange interaction between nearest-neighbour
spins is modelled using the Heisenberg model including single-site uniaxial anisotropy,

H = −
∑

i, j

Ji j (S+
i S−

j + Sz
i Sz

j ) −
∑

i

Di (Sz
i )

2 − gμB H
∑

i

Sz
i , (1)

where S+
i , S−

i and Sz
i are the spin operators for the localized spins of the atom at site i

in the particle, Ji j is the exchange interaction and Di (D < 0) is the single-site anisotropy
parameter, |D| < J . H is an external magnetic field. We assume for simplicity only nearest-
neighbour exchange interaction and take Ji j = Js, Di = Ds on the surface of the particle and
Ji j = Jb, Di = Db in the particle. It is important to mention that the exchange interaction
Ji j = J (ri − r j ) depends on the distance between the spins, i.e. on the lattice parameter, on
the lattice symmetry and on the number of next nearest neighbours. This is very important for
investigations of ion doping effects. The critical temperatures are connected with the exchange
interaction constants. They can be calculated from the relation TC = J zS(S + 1)/3kB, where
z is the number of nearest neighbours, S the spin value and kB the Boltzmann constant. From
this relation we have obtained the exchange interaction constant of the bulk Fe with bcc lattice
where TC = 1043 K, z = 8 and S = 2 to Jb = 64, 77 K.

Macroscopic and microscopic quantities can be calculated by using the retarded Green’s
function, which is defined as

Gi j(t) = −iθ(t)〈[S+
i (t); S−

j ]〉. (2)

After a formal integration of the equation of motion for (2), one obtains [30]

Gi j(t) = −iθ(t)〈[S+
i ; S−

j ]〉 exp(−iEi j(t)t) (3)

where

Ei j(t) = Ei j − i

t

∫ t

0
dt ′t ′

( 〈[ ji(t); j+
j (t ′)]〉

〈[S+
i (t); S−

j (t ′)]〉 − 〈[ ji(t); S−
j (t ′)]〉〈[S+

i (t); j+
j (t ′)]〉

〈[S+
i (t); S−

j (t ′)]〉2

)
(4)

with the notation ji(t) = 〈[S+
i , Hint]〉. The time-independent term

Ei j = 〈[[S+
i , H ]; S−

j ]〉
〈[S+

i ; S−
j ]〉 (5)
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is the spin-excitation energy in the generalized Hartree–Fock approximation (GHFA). The time-
dependent term in equation (5) includes damping effects.

For the spin-excitation energies we obtain the following expression in the GHFA:

Ei j =
(

2

N

∑

m

Jim(〈S−
m S+

i 〉 + 2〈Sz
m Sz

i 〉)δi j − 2Ji j(〈S−
i S+

j 〉 + 2〈Sz
i Sz

j 〉)

+ 2Di(2〈Sz
i Sz

i 〉 − 〈S−
i S+

i 〉)δi j + 2gμB H 〈Sz
i 〉δi j

)/
2〈Sz

i 〉δi j . (6)

If we neglect the transverse correlation functions 〈S−
i S+

j 〉 and decouple the longitudinal
correlation functions 〈Sz

i Sz
j 〉 → 〈Sz

i 〉〈Sz
j 〉 we obtain E in the random phase approximation

(RPA),

Ei j = gμB H δi j + 2

N

∑

m

Jim〈Sz
m〉δi j − 2Ji j〈Sz

i 〉 + 2Di 〈Sz
i 〉δi j . (7)

The experimentally obtained large width at half-maximum in the resonance spectra cannot
be understood within the RPA for small particles. Using the method of Tserkovnikov [30] we
go beyond the RPA and calculate the damping of the spin excitations in ferromagnetic particles
in the GHFA to be

γss(i) = 4π

N

∑

l

J 2
il Mi Ml [n̄l(1 + n̄l + n̄i ) − n̄l n̄i ]δ(El + Ei − Ei − El)

+ 2π D2
i M2

i n̄i(1 + n̄i )δ(Ei − Ei), (8)

where n̄m = 〈S−
m S+

m 〉 is the correlation function calculated from the spectral theorem.

3. Numerical results and discussion

In this section we present the numerical calculations of our theoretical results for a spherical
magnetic nanoparticle taking the following model parameters appropriate for Fe: Jb = 60 K,
Db = −20 K, S = 2. Due to the changed number of next nearest neighbours on the surface, the
interaction constant J can take different values for the surface Js compared to the value in the
particle Jb. Firstly we present the temperature dependence of the average magnetization and the
average spin excitation energy for different values of the surface exchange interaction constant
Js in figures 1 and 2. For the case where the exchange interaction of the surface shell takes the
value Js = 0.1Jb (figure 1, curve 1), i.e. Js is smaller than the value of the exchange interaction
constant in the particle Jb, the average magnetization (respectively the spin excitation energy—
figure 2) is reduced compared to the case for Js = Jb (curve 2). The magnetization and the
spin modes decrease with increasing temperature and vanish at the critical temperature TC of
the particle in accordance with the experimental data of Pishko et al [31] and Winkler et al
[32]. The critical temperature decreases due to the smaller value of the surface-coupling Js.
In the case Js = 3Jb, i.e. Js > Jb (figure 1, curve 3) the average magnetization (respectively
the spin excitation energy—figure 2) is larger compared to the case Js = Jb (curve 2). The
critical temperature TC of the small particle is enhanced due to the presence of larger Js values.
This behaviour is directly opposed to the case of Js < Jb. In figure 3 we show the temperature
dependence of the shell spin excitations for a particle with N = 5 shells and different Js-values.
We obtain analogous dependences for the shell magnetizations. It is demonstrated that for
Js < Jb the spin excitation energy of the surface shell n = 5 (full line) is smaller compared with
that of the central atom, n = 1 (full line), whereas for Js > Jb it becomes larger (n = 5, dashed
line) than the spin excitation of the central atom (n = 1, dashed line). Experimental evidence
of surface effects in the magnetic dynamics behaviour of ferrite nanoparticles is given by Sousa
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Figure 1. Temperature dependence of the average magnetization M for a spherical ferromagnetic
particle for N = 5 shells, Ds = Db, H = 0 and different Js-values: (1) Js = 0.1Jb, (2) Js = Jb,
(3) Js = 3Jb.

Figure 2. Temperature dependence of the average spin excitation energy E for a spherical
ferromagnetic particle for N = 5 shells, Ds = Db, H = 0 and different Js-values: (1) Js = 0.1Jb,
(2) Js = Jb, (3) Js = 3Jb.

et al [33]. Such surface modes have been detected by quasielastic neutron scattering [10] and
magnetic resonance experiments [11].

The damping γ corresponds to the full width at half-maximum (FWHM) of the resonance
line. It seems to have been generally accepted that phase transitions in nanoparticles are ‘wide’
and not sharp as in the bulk due to the larger damping effects obtained in nanoparticles. We have
calculated the spin excitation damping. The temperature dependence of γ for different values of
the surface exchange interaction constant Js is shown in figure 4. The damping increases with
increasing Js and increasing temperature. So, the larger damping effects cause a broadening of
the resonance peaks at high temperatures. This is in accordance with the theoretical results of
Usadel [29] and the experimental data of Kuhn et al [19] for α-Fe2O3 nanoparticles.
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Figure 3. Temperature dependence of the shell spin excitation energy En for N = 5 shells,
Ds = Db, H = 0, Js = 4Jb (full curves), Js = 0.2Jb (dashed curves) and n = 1—central
atom, n = 5—surface shell.

Figure 4. Temperature dependence of the spin excitation damping γ for N = 5 shells, Ds =
Db, H = 0 and different Js-values: (1) Js = 0.2Jb, (2) Js = Jb and (3) Js = 3Jb.

At the same time there are some experimental data mainly in ferrite [17, 34–36] and
antiferromagnetic [37, 38] nanoparticles which show that the resonance field Hr increases
whereas the FWHM (γ ) decreases with increasing temperature. De Biasi et al [39] have
presented the results of ferromagnetic resonance measurements on noninteracting amorphous
magnetic nanoparticle systems. They remarked the existence of two behaviours, one at low
and the other at high temperature. The temperature dependence of the line width has a
maximum and the resonance field has a minimum. In the high-temperature regime they
observe a close to symmetric line shape with decreasing linewidth with increasing T and
a superparamagnetic behaviour. At low temperatures the FMR behaviour shows signs of a
high anisotropy and the line width decreases with decreasing T . Unfortunately, there are not
so many experiments on the temperature dependence of the resonance field and linewidth in

6



J. Phys.: Condens. Matter 19 (2007) 216208 J M Wesselinowa and I Apostolova

ferromagnetic nanoparticles. But using the analogy between ferromagnetic and ferroelectric
thin films or nanoparticles we can see that there are many experimental data in ferroelectric
nanoparticles of BaTiO3 [40], PbTiO3 [41] and BaSrTiO3 [42] in which it is observed that the
energy decreases and the damping increases with increasing temperature, in accordance with
our finding. It may be that these differences between the temperature dependences of Hr and the
FWHM in ferromagnetic and ferri- or antiferromagnetic nanoparticles are due to the different
magnetic exchange interactions. For example, in ferri- and antiferromagnetic systems a
superexchange occurs via an oxygen atom. The antiferromagnetic nanoparticles have a nonzero
magnetic moment in contrast to the bulk case, which has been attributed to uncompensated
spins [43] or to a contribution from so-called thermoinduced magnetization [44]. Moreover,
macroscopic quantum tunnelling of the magnetization, which is characterized by a temperature-
independent relaxation, is expected to be more pronounced in antiferromagnetic nanoparticles
than in ferromagnetic nanoparticles [45]. In order to obtain the properties in ferri- and
antiferromagnetic nanoparticles we must extend our model, including two sublattices with
different spin directions and spin values or even more, eight, six or four, sublattices [46].
Furthermore, the temperature dependence of the anisotropy must be taken into account. Thus,
further theoretical studies and interpretations of the magnetic resonance experimental data of
magnetic nanoparticles remain very important.

There is some experimental evidence that the magnetic anisotropy of nanoparticles can
be larger [47, 48] or smaller [18, 49] than that of the bulk materials. A major contribution
of this enhancement or reduction comes from the surface spins. Ferromagnetic resonance is a
useful tool to probe the type and strength of the particle surface anisotropy. We have calculated
numerically the magnetization M , the spin excitation E and the damping γ in dependence of
Ds/Db. The results are shown in figure 5. The spin excitation energy (figure 5, curves 1a, 1b)
(and analogously the magnetization) decreases with increasing surface anisotropy values Ds,
whereas the damping increases with increasing Ds (figure 5, curves 2a, 2b). We would mention
that, for example, for the case Js > Jb (curve 2) with decreasing temperature the curve is
steeper, i.e. we obtain stronger dependence on Ds/Db. There is some competition between the
influence of Js, which enhances the magnetization M and the spin excitation energy E , and
of Ds, which reduces them. Nevertheless, the FWHM of the resonance line (or γ ) is expected
to depend more strongly upon the comparison the surface-to-bulk anisotropy ratio (see for
example [36, 50, 51]). In order to obtain stronger dependences we must take into account the
temperature and size dependence of the single-ion anisotropy Ds, the exchange anisotropy and
the dipole–dipole interactions between the particles, which is not considered here.

In order to study the size effects, the magnetization, the Curie temperature, the spin
excitation energy and the damping for particles with different shell numbers are calculated
numerically. The results are demonstrated in figures 6–10. The magnetization and the phase
transition temperature can be enhanced or reduced in comparison to the bulk due to increasing
or decreasing of the surface exchange interaction constant Js. In order to understand that the
moments increase or decrease with decreasing particle size, we have to consider two competing
factors that determine the magnetic moments in small particles. The decreasing coordination
number in small particles tends to enhance the moment. On the other hand, the interatomic
distances in metallic particles increase as particles grow in size. This factor would tend to
lower the particle moments as their size gets smaller. The particle size dependences of the
magnetization M and TC for Ds/Db = const and different Js/Jb-values are presented in
figures 6 and 7. There is a critical value of Ncr = 3 shells below which there cannot exist
a ferromagnetic phase. Below Ncr we have superparamagnetism. The first case Js < Jb

(figures 6, 7—curve 1) could explain the experimental data of decrease of the magnetization
M and the phase transition temperature TC in small particles of magnetite [1], SnFe2O4 [2],
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Figure 5. Dependence of the average spin excitation energy E (curves 1) and the damping γ

(curves 2) on the surface anisotropy Ds/Db for N = 5 shells, T = 600 K and different Js-values:
(a) Js = 0.2Jb and (b) Js = 2Jb.

Figure 6. Particle size dependence of the magnetization M/Mb for Ds = Db, T = 700 K and
different Js-values: (1) Js = 0.2Jb and (2) Js = 3Jb.

Y3Fe5O12 [3], Ni and Co [4]. The second case Js > Jb (figures 6, 7—curve 2) is responsible
for example for the enhancement of M and TC in Co [5] and ferrite nanoparticles [6]. There
exists a critical value Jsc, below which the particle can be magnetically ordered only as a
whole. However, for Js > Jsc = 1.22–1.23 Jb (for Ds/Db = 1) a surface ferromagnetic
phase is possible. This critical value Jsc depends on the surface anisotropy. For example, for
Ds/Db = 0.1 it is 1.30, i.e. it is enhanced for reduced Ds-values.

We have seen from figure 5 that the physical properties depend on the surface single-ion
anisotropy constant Ds. It must be noted that for the case Js > Jb, for example Js = 2Jb,
and strong surface anisotropy, for example Ds/Db = 2, the magnetization is larger compared
to the bulk value and the curve in the size dependence of the magnetization M(N) has a
maximum at low particle size, n = 4 (figure 8, curves 1 and 3). For small surface anisotropy,
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Figure 7. Particle size dependence of the phase transition temperature TC/T b
C for Ds = Db and

different Js-values: (1) Js/Jb = 0.2, (2) 2, (3) 3 and (4) 5.

Figure 8. Particle size dependence of the magnetization M for Js = 2Jb and different temperatures
T and different Ds-values: (1) Ds = 2Db, T = 800 K; (2) Ds = 0.2Db, T = 800 K,
(3) Ds = 2Db, T = 400 K; (4) Ds = 0.2Db, T = 400 K.

Ds < Db, (figure 8, curves 2 and 4) the magnetization M decreases with increasing particle
size N ; there is no maximum. A similar maximum is obtained in the dependence E(N) for
Js/Jb = 2 and Ds/Db = 2, too. The maximum decreases with decreasing temperature. The
magnetization at high temperatures decreases more steeply with increasing particle size. Such
a maximum in M(N) is observed in Au nanoparticles by Hori et al [7]. A similar maximum in
Hc at diameters of ≈10–20 nm is obtained experimentally due to strong surface anisotropy for
example in spherical Co–Ni and Fe–Co–Ni particles [11], yttrium iron garnet nanoparticles [52]
and CoFe2O4 nanoparticles [53]. We can conclude that the magnetic single-ion anisotropy, and
mainly the surface anisotropy, plays a dominant role in determining the magnetic properties of
particles and must be taken into account in order to explain the experimental data.
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Figure 9. Particle size dependence of the spin excitation energy E/Eb for different temperatures
T , (1) T = 400 K and (2) T = 700 K, and different Js-values: (a) Js = 0.2Jb and (b) Js = 2Jb.

The observed increasing or decreasing of the spin excitations with decreasing particle size
(figure 9) due to different surface effects is in accordance with different experimental data. The
spin energy curve is steeper for the case Js < Jb. It can be seen from figure 9 that reaching
the bulk energy value is dependent on the temperature. At high temperatures Eb is reached
for smaller particles. The spin excitation energy E decreases strongly with increasing particle
size for Js > Jb at high temperatures. For Js < Jb the spin excitation energy E decreases
with decreasing particle sizes (figure 9, curves 1a and 2a). This is in qualitative agreement
with the experimental data of Tanaka et al [54] and Gaudry et al [55], where the frequency of
the peak shifts towards the lower-frequency side with decreasing size. Mercier et al [11] have
found that the resonance frequencies in spherical Co–Ni and Fe–Co–Ni particles depend on the
magnetic particle size. When the particle size decreases, an overall shift of the bands toward
high frequencies is observed. This would correspond to the case of Js > Jb (figure 9, curves
1b and 2b). Unfortunately, there are not so many experimental data on the spin excitations in
nanoparticles.

The damping increases with decreasing particle size for the two cases Js < Jb and Js > Jb

(figure 10), which is in agreement with many experimental data [1, 2, 14, 18, 54, 56]. The
inverse damping is proportional to the relaxation time. Since the relaxation time of magnetic
nanoparticles can be changed by changing the size of the nanoparticles or using different kinds
of materials, magnetic nanoparticles have been (and will be in the future) a very useful tool in
different kinds of applications, from biomedical [57, 58] to data storage systems.

The above mentioned results are obtained without external magnetic field H . Applying
a magnetic field with a specific frequency and amplitude it is possible for the magnetic
nanoparticles to absorb energy, resulting in an increase in the local temperature around the
nanoparticle system. This is used in in vivo applications in medicine to destroy tumour cells.
In such cases, magnetic nanoparticles with materials with Curie temperatures at approximately
42 ◦C (the temperature where the tumour cells are destroyed) are preferred. For these materials,
overheating problems can be avoided. The particle system will then work as a thermostat. In
other applications where local heating is required, magnetic particles can also be used. In all of
these cases, it is important to really understand the magnetic properties of the particle systems.
Taking into account the influence of an external magnetic field we have calculated numerically
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Figure 10. Particle size dependence of the spin excitation damping γ for Ds = Db, T = 800 K
and different Js-values: (1) Js = 0.2Jb and (2) Js = 2Jb.

Figure 11. Magnetic field dependence of the damping γ for Js = 0.5Jb, Ds = 2Db, N = 7 and
different temperature T -values: (1) T = 300, (2) 600 and (3) 800 K.

the magnetization M , the Curie temperature TC, the spin excitations E and their damping γ .
We obtain that M, TC and E increase with increasing external magnetic field H , whereas the
damping of the spin excitations γ decreases with H (figure 11). So, decreasing of particle
size and magnetic field leads to large damping effects. There is some competition between
the particle size N and the intensity of the magnetic field H . The magnetization, the phase
transition temperature and the spin excitation energy can decrease with increasing particle size
N for the case Js > Jb and increase with increasing applied magnetic field H .

4. Conclusions

Using the Heisenberg model and the method of real-space Green’s functions we have calculated
the magnetization, the spin-excitation energy and the damping of small spherical ferromagnetic
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particles. The temperature and size dependence is discussed. It must be noted that for the case
Js > Jb, for example Js = 2 Jb, and strong surface anisotropy, for example Ds/Db = 2,
the magnetization is larger compared to the bulk and the curve in the size dependence of
the magnetization M(N) has a maximum at low particle size, n = 4 (figure 8, curves 1
and 3). We obtain the temperature, anisotropy and particle size dependence of the spin-
excitation energy E and the damping γ . The spin-excitation energy (figure 5, curves 1a and
1b) (and analogously the magnetization) decreases with increasing surface anisotropy values
Ds, whereas the damping increases with increasing Ds (figure 5, curves 2a and 2b). There is
some competition between the influence of Js, which enhances the magnetization M and the
spin excitation energy E , and of Ds, which reduces them. Whereas the spin-excitation energy
can increase or decrease, the damping always increases strongly with lowering of particle size.
The influence of an external magnetic field is discussed, too. It increases the spin excitation
energy and decreases the damping. The theoretical results are in good qualitative agreement
with the experimental data of ferromagnetic small particles.
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